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TOPIC 2: COMPLEX NUMBERS & TRIGONOMETRIC IDENTITIES  
 
2. Use of complex numbers in deriving trigonometric identities. 
 
To prove the common trigonometric identities, you really only need to memorize two of them. 
The first one is easy. It's the Pythagorean identity. 
 

1sincos 22 =+ θθ         [Make sure you know why this one is true!] 
 
The second one may be a bit strange. Called Euler's Identity , it is: 
 

 
θθθ sincos ie i +=  

              
                    [“Euler" is pronounced like “oiler."] 

 
                                  

We are going to begin with a quick review of complex numbers. Then we'll look at a way to 
derive all the common trigonometric identities so that you will never have to memorize them 
again. 
 
We shall take the opportunity to review some trigonometry too. 
 

2.1 Review of complex numbers 
 
A complex number is a number written in the form 

      yixz +=     where x and y are real numbers and where 1−=i . 
 
We call x the real part of z, and y the imaginary part of z: 

)Im(),Re( zyzx ==                                      e.g. 
 

It can be plotted as a point or a vector in a plane (called the Argand diagram or Argand 
plane). 
 
 
 
 
 
 
 
 
Argand diagram 
   

 
=z 2+3i 

 
=)Re(z                        )Im(z = 

 
=w  

=)Re(w                         =)Im(w  
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=z 2+3i  
Notational convention 
If 0=x  we write yiz = . 
If 0=y  we write xz = . 
If 0== yx  we write 0=z . 
 
 
2.2 COMPLEX ALGEBRA 

Equality 

Two complex numbers iyxz 111 += , iyxz 222 +=  are said to be equal  
         if and only if 21 xx =  and 21 yy = . 
 
Sum and Difference 
Complex numbers are added by adding their real parts and adding their imaginary parts. 
If iyxz 111 +=  and iyxz 222 +=  are complex numbers, then their sum is the complex 
number: 
 iyyxxiyxiyxzz )()()()( 2121221121 +++=+++=+  

Similarly, the difference of two complex numbers iyxz 111 +=  and iyxz 222 +=  is the 
complex number: 

iyyxxiyxiyxzz )()()()( 2121221121 −+−=+−+=−  
 
Example 1: Add )59()27( ii −++                                    
Solution: 
(7 2 ) (9 5 ) (7 9) (2 5)

16 3

i i i

i

+ + − = + + −
= −

 

 
Example 2: Subtract )153()124( ii −−+  
Solution: 
(4 12 ) (3 15 ) (4 3) (12 15 )

1 27

i i i i

i

+ − − = − + +
= +

 

 
Product 
The product of two complex numbers iyxz 111 +=  and iyxz 222 +=  is the complex number:

 iyxxyyyxxiyxiyxzz )()())(( 21212121221121 ++−=++=  
 

From 1−=i , we get i2 = -1, iiiii −=−== )(123 , 1)( 234 =−=−== iiiiii  
 

Discussion: 
 
Ways of writing steps for   
        addition,  

subtraction, and    
multiplication 

   of complex numbers. 
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Example 3: Multiply )29)(51( ii +−−  
Solution: 

2(1 5 )( 9 2 ) 9 2 45 10

9 47 10( 1)

1 47

i i i i i

i

i

− − + = − + + −
= − + − −
= +

 

 
 

Conjugate       z         or     z*  
The conjugate of a complex number yixz +=  is the complex number yixz −= . 
We obtain the z   by reversing the sign of the imaginary part. 
If yixz += , then 22222))(( yxiyyxixyixyixyixzz +=−+−=−+= . 
 
If z a bi= +  then 
 
 
 
 
 
 
 
                                                                              biaz −=  
 
 
 
 
Division      
To find the quotient of two complex numbers and obtain the result in the form a bi+ , we 
multiply both the numerator and the denominator by the complex conjugate of the 
denominator. 
 
Let 1 1 1z x y i= +  and iyxz 222 +=  with 2 0z ≠ . 

 

Then    i
yx

xyyx

yx

yyxx

iyxiyx

iyxiyx

iyx

iyx

z

z
2

2
2

2

2121

2
2

2
2

2121

2222

2211

22

11

2

1

))((

))((

+
+−

+
+
+

=
−+
−+

=
+
+

= . 

   
 
 
 
Example 4: Express in the form a bi+   
 

(a) 
i−9

3
         (b)   

i

i

29

43

−
+

 

Solution:    (a)      i
i

i

i

i

i

ii 82

3

82

27

82

327

9

327

)9(

)9(

9

3

9

3
22

+=+=
−
+=

+
+⋅

−
=

−
 

y 

x 

z a bi= +

 

 Note: There is no need to memorize this. 
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2.3 Review of Trigonometric Functions  
(Most of this subsection is extracted from an appendix in Stewart’s Calculus.) 
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  Trigonometric functions of special angles 
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1−  

 
0 

 
1 

 
θtan  

 

 
 0 3

1
 

 
 1 

 

3  

 
Und
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1−  3
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  0 

 
Und 

 
0 

 

In class, we shall guide you  
how to remember this the easy way. 
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2.4 Euler's Formula and Trigonometric Identities 
 
Euler's Formula says that for any real numberθ ,  

θθθ sincos ie i +=  
          
Angle addition and subtraction identities 
 
Example 1. Addition Formulas for cosine and sine. 
 
We use the Euler’s Formula to express )cos( βα +  and )sin( βα +  in terms of αcos , αsin , 

βcos and βsin  as follows: 
 

ααα sincos ie i += ,  βββ sincos ie i +=    (Euler’s formula) 
 

)sin)(cossin(cos ββααβα iiee ii ++= ; 
)( βα +ie  = )sincoscos(sin)sinsincos(cos βαβαβαβα ++− i  

 
But )( βα +ie  = )sin()cos( βαβα +++ i                               (Euler’s formula again) 
 

=+++ )sin()cos( βαβα i  )sincoscos(sin)sinsincos(cos βαβαβαβα ++− i  
 
 

Equating the real and imaginary parts on each side of the equation, we have 
  
 
 
 
These are the addition formulas for the cosine and the sine, respectively.  
 
From these, it would be easy to obtain subtraction formulas and tangent formulas for 
compound angles. [See tutorial questions.] 
 
 
Euler’s formula allows us to rewrite exponentials in terms of trigonometric functions. 
It is also useful to be able to go the other way: write trigonometric functions in terms 
of exponentials.  
To derive the necessary formula,  
note that, since θθ cos)cos( =−  and θθ sin)sin( −=− ,  

θθθ sincos ie i +=  
θθθ sincos ie i −=−  

                                                                       [Do you really know why?] 
That is, θie  and θie−  are conjugates.  
By adding or subtracting theses equations, and dividing by 2 or 2i, we shall obtain the 
formulas: 
     

2
cos

θθ

θ
ii ee −+= ,     

i

ee ii

2
sin

θθ

θ
−−=  

=+ )cos( βα  βαβα sinsincoscos −  
 

=+ )sin( βα  βαβα sincoscossin +  
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Some examples using these formulas. 
 
Example 2.  Consider x2sin . 

Using 
i

ee ii

2
sin

θθ

θ
−−= , we have  

( ) ( ) ( )12cos
2

1
22cos2

4

1
2

4

1

2
sin 022

2

2 −−=−−=−+−=






 −= −
−

xxeee
i

ee
x xixi

ixix

 

 
In this example, a power of sine is expressed in a form involving a cosine (not a power of it). 
This technique will be useful when trying to integrate x2sin  later. 
 
 
Example 3.  

Using 
2

cos
θθ

θ
ii ee −+= , 

i

ee ii

2
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θ
−−=  

)sin7(sin
2
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In this example,  the form nxmx cossin  (product of a sine and a cosine) is expressed in a 
form involving the sum of two sines (i.e., a linear combination of two sines). 
 
Similar examples can be done for nxmx sinsin  and nxmx coscos . 
 
See the tutorial questions for more examples. 
 
 

(nby, Nov 2015) 
 


